
International Journal of Scientific & Engineering Research, Volume 5, Issue 5, MAY-2014 110
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Hybrid Approach for Effective Load Balancing of
Distributed File Systems in Cloud Computing

A. Lalitha, P. Mahendrababu, Prof. T. Rajendran

Abstract- Load balancing plays an effective role on performance in cloud computing environment. Efficient load balancing makes cloud
computing more efficient and improves performance of the entire system. In our existing system achieves load balancing with the help of
load rebalancing algorithm using DHT protocol.But the existing solutions are not efficient for load balancing so that the various methods
have been developed to resolve new problems. In our proposed system introduces a partitioning method for storing static and dynamic
files using partitioning method in various situations for efficient load balancing.AVL tree algorithmused along with a maze technique to
improve the system performance and reduces the time complexity.

Index Terms- A Maze Technique, Cloud Computing, Load Balancing, Partitioning.

—————————— ——————————

1 INTRODUCTION
loud computing is an effective and well-chosen
technology in the field of computer science. Distributed
technologies in cloud computing will satisfied the user

needs and they provide various applications. The cloud is
changing our life by providing users with different types of
services. NIST gave a definition of cloud computing as a model
for enabling convenient, ubiquitous, on-demand network
access to a shared pool of configurable computing resources
(e.g., applications, networks, storage, servers, and services)
that can be rapidly provisioned and released with minimal
management effort or service provider interaction. More and
more people give attention to cloud computing.

Cloud computing is more efficient and scalable. But,
maintaining the several jobs in this environment is a complex
problem with load balancing. The job arrival pattern is not
predictable and capacities of each node in the cloud differ, for
load balancing problem. When the environment is larger in
size and also more complex, these partitions simplifies the load
balancing process.

In this proposed system have the algorithm that chooses the

correct partitions for arriving files while the node balances for
each partition chooses the effective load balancing strategy. In
this system we are interested to studying the load balancing
problem in cloud environment specialized for large-scale and

dynamic system. Such a system has more number of nodes
with different behavior. All the nodes and files are more
dynamic in nature. Our objective is to find out the path where
the static and dynamic files are taken place and balance the
loads of node. Additionally, we aim to reduce the time delay
and then the performance will be increased.

1 2 2 RELATED WORK

Earlier studies have many of the load balancing algorithms in
cloud computing like, Round Robin Algorithm, Throttled Load
Balancing Algorithm, Load Rebalancing Algorithm, Equally
Spread Current Execution Algorithm, etc. These all the
algorithms are try to achieve higher throughput, smaller the
response time and also avoid overload. Here, we can discuss all
the algorithms that are used in existing system.

Round Robin Algorithm is based on the random sampling
method. This algorithm randomly selects the load when the
system is unbalanced. Unbalanced system can involve both
overload and under load stage. This algorithm is not suitable
for all kind of system.

Throttled Load Balancing Algorithm is fully based on virtual
machine. Initially, client will make a request to the load
balancer to find a Virtual Machine which is suitable to perform
the required operation.

Load Rebalancing Algorithm is the one which performing the

prior load balancing. This improves the performance of the
system, reduces the traffic and movement cost. But this is not
applicable for all the situations.

Equally Spread Current Execution Algorithm is using the load

balancer to spreading the loads into different virtual machines.
Based on the priority the loads are distributed randomly to the
virtual machines. Before the distribution process it will check
the size of the file and load capacity of virtual machine. This
will increases the throughput and also take less time.

C

————————————————
• A.Lalitha is currently pursuing master degree program in computer science

and engineering in Chettinad College of Engineering and Technology, Karur,
Tamil Nadu, India. E-mail: lalitaarjun91@gmail.com

• P.Mahendrababu is working as Assistant professor in department of
computer science and engineering in Chettinad College of Engineering and
Technology, Karur, Tamil Nadu, India. E-mail: mahenbabu@gmail.com

• Prof T. Rajendran is working as the Head of Department of Computer Science
and Engineering and Information Technology in Chettinad College of
Engineering and Technology, Karur, Tamil Nadu, India. E-mail:
rajendran_tm@yahoo.com

IJSER

http://www.ijser.org/
mailto:lalitaarjun91@gmail.com
mailto:mahenbabu@gmail.com
mailto:rajendran_tm@yahoo.com

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, MAY-2014 111
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

DHT Protocol is the one which makes every node to be

decentralized and rebalance the load by itself. But it requires
more computing power and movement cost. So we can move
on to the proposed system.

3 PROPOSED SYSTEM
Load balancing schemes depending on whether the system
dynamics are important can be either static or dynamic. Static
schemes do not use the system are less complex while dynamic
schemes will bring the additional costs for the system but can
change as the system status changes.

The load balancing is aimed at the cloud which has both
static and dynamic nodes. The cloud will chooses the suitable
partitions for arriving jobs while the partitioning technique for
each node partition chooses the best load balancing strategy. In
our proposed system can uses the some of the techniques like a
maze technique and also partitioning. These are all the
techniques will be discussed furthermore.

3.1 A Maze Technique
A maze is a technique which is mainly used by the files to

find out their exact suitable node. The existing system using the
migration scheme instead of that we can proposed the maze
techniques that will reduces the time complexity.

The maze technique can have two values (0 and 1).Where

value 0 represents the node is static and a value of 1 represents
the node is dynamic. If the files can be separated then our
system complexity will be reduced. Then the maintenance of
the system is to be simple.

We may have the chance to go in different directions. Not

knowing which one to select but save our current position.
With each new location we will examine the new possibilities.

Sometimes we can search the path that is already visited.

These will takes the additional time to find out the exact
position. To avoid the visiting same path again, we can mark
the node as already visited. Then the node will not searching
the same node again. And then it reduces the time complexity.

3.2 Partitioning Technique
The load balancing in cloud is still an existing problem that
needs new architecture to overcome the complexities. And the
load balancing plays an effective role on improving the overall
performance and reducing time delay. This partitioning
technique will discuss below.

//finding the overloaded node
procedurenode (i, V)
 j V[i]
 if j<0 then return(i)

 elsereturn(node(j))
endif
endprocedure

// finding overloaded node and compress V
procedurenode(i,V)
 jv[i]
 if j <0 then return(i)
 elseV[i]node(j);
 return(V[i])
endif
endprocedure

//joining two file partitioning together
procedurejoin-filepartition(i,j,V)
 node(i,V); node(j,V);
 If != then
 - V[];
 -V[]
 if < then
 V[i] ;
 V[j]-(+)
 else
 V[j] ;
 V[i]–(+)
 endif
 endif
 return (V)
endprocedure

3.3 System Design
Our system design is discussed given below.

Fig. 1.System Design

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, MAY-2014 112
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

3.4 Procedure
//Initialize the list to the maze entrance coordinates and

direction{left or right}
While(list is not null) {
(i,j,dir)= coordinates and direction from end of list;
While(there are more moves from (i,j){
(g,h)= coordinates the next move;
AvlNode<K,E>*y=new AvlNode<T>(k,e);
if(k<ppkey)ppleftChild=y;
//insert left
else pprightChild=y;
// insert right
//Adjust balance factors of all nodes.
//all nodes on path presently have a balance factor of 0.Balance

factor d = +1 then k is inserted in left subtree of node a. Or d = -1 then
k is inserted in the right subtree of node a.

int d; AvlNode<K,E>*b,*c;
if(k>akey) {
b =p=arightChild; d=-1; }
while(p!=y)
if(k>pkey)
pbf=-1;p=prightChild;
}else
{pbf=1; p=pleftChild;

 }// is tree unbalanced?
if(!(abf)||!(abf+d))
{//tree still balanced
abf+=d; return;}
//tree unbalanced, determine the rotationtype
if(d= =1)
{//left imbalance
if(bbf==1)

{//rotation type LL
 aleftChild=b=bright Child;

brightChild=a; abf=0; bbf; }
else{
//rotation type LR
c =brightChild;
brightChlid=cleftChild;
aleftChild=crightChild;
cleftChild=b; crightChild=a;
switch (cbf) {
Case1: abf= -1; //dynamic
bbf=0; break;
Case -1: bbf = 1; //static
abf = 0; break;
Case 0: bbf= 0; abf=0;
break;}
cbf=0; b=c;
}}
else{
//right imbalance}
//subtree with node b has been rebalanced
if(!pa)root=b;
elseif(a==paleftChild)
PaleftChild=b;
else parightChild=b;
return;}
if((fs==f))&&((fd==f))success;
}}

By using the above algorithm in our system we can balance
the loads effectively these will surely improving the
performance of our system and reducing the time complexity.

4 EXPECTED OUTCOME
Comparing with the Fig.3 and 4, the overall system
performance is improved.

Fig. 2.Description of Nodes

0
1
2
3
4
5
6

1 2 3 4

Ti
m

e

Number of files

Load

Performanc

Time
complexity

Fig. 3.Novel System

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, MAY-2014 113
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

It shows that, the static and dynamic files will be

stored in balanced state. The graph strongly shows the
hybrid model will provide higher performance than the
novel system and it also reduces the time complexity.

5 CONCLUSON
The novel load balancing system to deal with the
problem of load balancing in dynamic and distributed
file system. In that system, load balancing is not more
effective in-terms of movement cost, network traffic, time
delay and load imbalance. So in our proposed system
introduced the partitioning method for storing static and
dynamic files in various situations for efficient load
balancing. The effective load balancing will be achieved
using a maze and partitioning technique. Our system
aims to develop the enhanced strategies through hybrid
model for load balancing. The proposed load balancing
system outperforms in-terms of load imbalance, time
complexity and system performance.

ACKNOWLEDGMENT
The authors are grateful to the anonymous reviewers
who have provided us with valuable comments to
improve their study.

REFERENCES
 [1] Hung-Chang Hsiao, Member, IEEE Computer Society, Hsueh

Yi Chung, HaiyingShen, Member, IEEE, and Yu-Chang Chao,
”Load Rebalancing for Distributed File Systems in Clouds” IEEE
Trans. Parallel and Distributed Systems, vol. 24, no.5, May.
2013.

[2] Hadoop Distributed File System Rebalancing Blocks, http://
 developer.yahoo.com/hadoop/tutorial/module2.html#

rebalancing, 2012

[3] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F.
Kaashoek, F. Dabek, and H. Balakrishnan, Chord: A Scalable
Peer-to-Peer Lookup Protocol for Internet Applications, IEEE/ACM
Trans. Networking, vol. 11, no. 1,pp. 17-21, Feb. 2003.

[4] M. A. Weiss, Data Structures and Algorithm Analysis, Benjamin
Cummings, RedwoodCity, California, 1994.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A.Lakshman, A. Pilchin, S.Sivasubramanian, P. Vosshall, and
W.Vogels, “Dynamo: Amazon’s Highly Available Key-Value
Store,”Proc. 21st ACM Symp. Operating Systems Principles
(SOSP ’07),pp. 205-220, Osct. 2007.

[6] J.W. Byers, J. Considine, and M. Mitzenmacher, “Simple Load
Balancing for Distributed Hash Tables,” Proc. First Int’l Workshop
Peer-to-Peer Systems (IPTPS ’03), pp. 80-87, Feb. 2003.

[7] Y. Zhu and Y. Hu, “Efficient, Proximity-Aware Load Balancing
forDHT-Based P2P Systems,” IEEE Trans. Parallel and
Distributed Systems, vol. 16, no. 4, pp. 349-361, Apr. 2005.

[8] H.C. Hsiao, H. Liao, S.S. Chen, and K.C. Huang, “Load Balance
with Imperfect Information in Structured Peer-to-Peer Systems,”
IEEE Trans. Parallel Distributed Systems, vol. 22, no. 4, pp. 634-
649,Apr. 2011.

[9] L.M. Ni, C.W. Xu, and T.B. Gendreau, “A Distributed
DraftingAlgorithm for Load Balancing,” IEEE Trans. Software
Eng., vol. 11,no. 10, pp. 1153-1161, Oct. 1985.

[10] M. Parashar and J.C. Browne, “On PartitioningDynamic
Adaptive Grid Hierarchies”, Proceedings of the 29th Annual
Hawaii International Conference on System Sciences, Jan. 1996.

[11] Tushar Desai, JigneshPrajapati, “A Survey Of Various Load
Balancing Techniques And Challenges In Cloud Computing”,
International Journal Of Scientific & Technology Research
Volume 2, Issue 11, November 2013.

[12] Y. Zhu and Y. Hu, “Efficient, Proximity Aware Load Balancing for
DHT-Based P2P Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 16, no. 4, pp. 349-361, Apr. 2005.

0

1

2

3

4

5

6

1 2 3 4

Ti
m

e

Number of files

Load

Performance

Time
complexity

Fig. 4.Hybrid System

IJSER

http://www.ijser.org/

	1 INTRODUCTION
	3 PROPOSED SYSTEM
	3.1 A Maze Technique
	3.2 Partitioning Technique
	3.3 System Design
	3.4 Procedure
	4 EXPECTED OUTCOME
	5 CONCLUSON
	Acknowledgment
	References

